Solar Irradiance Covariance Modeling for Oahu, Hawaii

Chenyi Luo, Shengjie Shi and Faye Wang

Department of Statistics, University of California, Davis 2016 Research Training Group Project with Joshua Patrick

UCDAVIS UNIVERSITY OF CALIFORNIA

Introduction

Solar irradiance measurements are highly correlated with the amount of energy produced by a grid of photovoltaic panels. Thus, reliable forecasting of irradiance will lead to reliable forecasting of energy output.

Utility-scaled solar plants are becoming more prominent. Modeling and forecasting methods of systems over various spatial and temporal resolutions are needed.

The spatio-temporal kriging forecaster [1]:

$$Z\left(s_{0},\mathit{t}_{0}
ight)=\mu\left(s_{0},\mathit{t}_{0}
ight)+\mathbf{c}\left(s_{0},\mathit{t}_{0}
ight)'\Sigma^{-1}\left(\mathbf{Z}-oldsymbol{\mu}
ight)$$

where $\mathbf{Z} = (Z(s_1, t_1), \dots, Z(s_n, t_n))'$ for n space-time coordinates, $\mu = E[\mathbf{Z}], \Sigma = cor(\mathbf{Z}),$ and $\mathbf{c}(s_0, t_0) = cor(Z(s_0, t_0), \mathbf{Z}).$ Aryaputera et al. [2] used non-separable, direction dependent covariance models to forecast solar irradiance data.

- ▶ They used separate models fitted individually to time and space.
- ► The separate models were multiplied to make a separable covariance model.
- A non-separable model was used in which the separability parameterization of [3] was fitted.
- A directional model was used based on prior knowledge of wind for the day and location of their data set.

Purpose

For this project, we introduce a visual method that uses the correlation in the irradiance data to specify the directional covariance model.

Location Map

Figure: Oahu, Hawii

The data come from 17 sensors placed at the Oahu, HI, airport. The data were obtained from the National Renewable Energy Laboratory (NREL). Irradiance measurements were taken once a second for the entire day of August 5, 2012. The data were then averaged over every 30 seconds with the measurements taken at night removed. A clear sky model was used to detrend the data [4].

Separable and Fully Symmetric Models

- We first fit a separable covariance model by first fitting models to the spatial and time correlations separately:
- Exponential model for spatial:

$$C_s(\boldsymbol{h}) = (1 - v) \exp(-c\|\boldsymbol{h}\|) + v\mathcal{I}_{\boldsymbol{h}=0},$$

Cauchy model for time:

$$\mathcal{C}_t(u) = (a|u|^{2\alpha} + 1)^{-\tau}$$

► The separable covariance model is then

$$\mathcal{C}_{sep}\left(oldsymbol{h},u
ight)=\mathcal{C}_{s}(oldsymbol{h}) imes\mathcal{C}_{t}(u)$$

▶ The non-separable fully symmetric model is

$$\mathbf{f}_{S}(\mathbf{h}; u) = \frac{1 - v}{(1 + a|u|^{2\alpha})} \times \begin{bmatrix} \exp\left(-\frac{c\|\mathbf{h}\|}{(1 + a|u|^{2\alpha})^{\frac{\beta}{2}}}\right) \\ + \frac{v}{1 - v}\mathcal{I}_{\mathbf{h}=0} \end{bmatrix}$$

The values of v, c, a, and α are the same as for C_{sep} . Using these values, β is estimated which indicates the level of separability (0 = separable, 1 = non-separable).

Figure: temporal-correlation

Figure: Spatial-correlation

Directional Models

- Calculate the directional distances for each pair of sensors: h₁ =along wind distance, h₂ =crosswind distance
- Find the differences between along wind correlation, corr $(Z(s_i, t u), Z(s_j, t))$, and against wind correlation, corr $(Z(s_i, t), Z(s_j, t u))$, for some time lag u for each pair of sensors $i \neq j$
- ► The difference correlation is modeled as

$$C_{diff}(h, u) = \left(I_{u>0}I_{h_1>0}\left[\beta_1^{(u)}h_1 + \beta_2^{(u)}h_2 + \beta_3^{(u)}h_1h_2 + \beta_4^{(u)}h_1^2 + \beta_5^{(u)}h_1^2\right]\right)$$

► The directional correlation function is then

$$C_{dir}(h, u) = C_{FS}(h, u) + \alpha C_{diff}(h, u)$$

Time lag = 5

Time lag = 10

Time la

Figure: Directional correlation plots for the training data on Aug 5.

Figure: Example of directional distance

Result

- We used 50% training data. We utilized a moving window approach in which the previous 50% data was used to fit the model and then predict the next u = 1, ..., 10 time points.
- Weighted nonlinear least squares implemented with the nls function in R were used to fit the Cauchy and exponential models to the time and spatial correlations, respectively. We used inverse distance weights.
- ▶ When determining the direction, we only examined directional plots for the first 50% training data. For computational speed, we did not regenerate for each predicted time point. Thus, we are assuming the wind direction stays constant throughout the day
- From the directional plots, we determined that the previous 5 time points (2 and half minutes) of data should be used to predict the next time point(s).
- In the figure below, we can see that the directional model results in the lowest root mean squared prediction error.

Figure: Root mean square prediction error for the three covariance models predicting 1,..., 10 time points ahead. The gray line represents the standard deviation of the testing data.

References

- [1] Noel Cressie and Hsin-Cheng Huang. Classes of nonseparable, spatio-temporal stationary covariance functions. *Journal of the American Statistical Association*, 94(448):1330–1339, 1999.
- [2] Aloysius W Aryaputera, Dazhi Yang, Lu Zhao, and Wilfred M Walsh. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. *Solar Energy*, 122:1266–1278, 2015.
- [3] Tilmann Gneiting, Marc G Genton, and Peter Guttorp. Geostatistical space-time models, stationarity, separability, and full symmetry. *Monographs On Statistics and Applied Probability*, 107:151, 2006.
- [4] Matthew J Reno, Clifford W Hansen, and Joshua S Stein. Global horizontal irradiance clear sky models: Implementation and analysis. *SANDIA report SAND2012-2389*, 2012.