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Introduction

Solar irradiance measurements are highly correlated with the
amount of energy produced by a grid of photovoltaic panels.
Thus, reliable forecasting of irradiance will lead to reliable
forecasting of energy output.
Utility-scaled solar plants are becoming more prominent.
Modeling and forecasting methods of systems over various
spatial and temporal resolutions are needed.
The spatio-temporal kriging forecaster [1]:

Z (s0, t0) = µ (s0, t0) + c (s0, t0)
′Σ−1 (Z− µ)

where Z = (Z (s1, t1) , . . . ,Z (sn, tn))
′ for n space-time coordinates,

µ = E [Z] ,Σ = cor (Z), and c (s0, t0) = cor (Z (s0, t0) ,Z).
Aryaputera et al. [2] used non-separable, direction dependent
covariance models to forecast solar irradiance data.
I They used separate models fitted individually to time and space.
I The separate models were multiplied to make a separable

covariance model.
I A non-separable model was used in which the separability

parameterization of [3] was fitted.
I A directional model was used based on prior knowledge of wind

for the day and location of their data set.
Purpose

For this project, we introduce a visual method that uses the
correlation in the irradiance data to specify the directional
covariance model.
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Figure: Oahu, Hawii

The data come from 17 sensors placed at the Oahu, HI, airport.
The data were obtained from the National Renewable Energy
Laboratory (NREL). Irradiance measurements were taken once a
second for the entire day of August 5, 2012. The data were then
averaged over every 30 seconds with the measurements taken at
night removed. A clear sky model was used to detrend the data
[4].

Separable and Fully Symmetric Models

I We first fit a separable covariance model by first fitting
models to the spatial and time correlations separately:

I Exponential model for spatial:

Cs(h) = (1− v)exp(−c‖h‖) + vIh=0,

I Cauchy model for time:

Ct(u) = (a|u|2α + 1)−τ

I The separable covariance model is then

Csep (h,u) = Cs(h)× Ct(u)

I The non-separable fully symmetric model is

CFS(h;u) =
1− v

(1 + a|u|2α)
×

[
exp

(
− c‖h‖

(1 + a|u|2α)
β
2

)
+

v
1− v

Ih=0

]
I The values of v , c,a, and α are the same as for Csep.

Using these values, β is estimated which indicates the
level of separability (0 = separable, 1 = non-separable).
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Figure: temporal-correlation
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Figure: Spatial-correlation

Directional Models

I Calculate the directional distances for each pair of
sensors: h1 =along wind distance, h2 =crosswind
distance

I Find the differences between along wind correlation,
corr

(
Z (si, t − u) ,Z

(
sj, t
))
, and against wind correlation,

corr
(
Z (si, t) ,Z

(
sj, t − u

))
, for some time lag u for each

pair of sensors i 6= j
I The difference correlation is modeled as

Cdiff (h,u) =
(

Iu>0Ih1>0

[
β
(u)
1 h1 + β

(u)
2 h2

+β
(u)
3 h1h2 + β

(u)
4 h2

1 + β
(u)
5 h2

2

])
+

I The directional correlation function is then

Cdir (h,u) = CFS (h,u) + αCdiff (h,u)
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Figure: Example of directional distance

Figure: Directional correlation plots for the training data on Aug 5.

Result

I We used 50% training data. We utilized a moving window
approach in which the previous 50% data was used to fit the
model and then predict the next u = 1, . . . ,10 time points.

I Weighted nonlinear least squares implemented with the nls

function in R were used to fit the Cauchy and exponential
models to the time and spatial correlations, respectively. We
used inverse distance weights.

I When determining the direction, we only examined directional
plots for the first 50% training data. For computational speed,
we did not regenerate for each predicted time point. Thus, we
are assuming the wind direction stays constant throughout the
day.

I From the directional plots, we determined that the previous 5
time points (2 and half minutes) of data should be used to
predict the next time point(s).

I In the figure below, we can see that the directional model
results in the lowest root mean squared prediction error.

Predict Ahead
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Figure: Root mean square prediction error for the three covariance models predicting 1, . . . ,10
time points ahead. The gray line represents the standard deviation of the testing data.
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