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Introduction Separable and Fully Symmetric Models

Solar irradiance measurements are highly correlated with the . We first fit a separable covariance model by first fitting . We used 50% training data. We utilized a moving window
amount of energy produced by a grid of photovoltaic panels. models to the spatial and time correlations separately: ik approach in which the previous 50% data was used to fit the
Thus, reliable forecasting of irradiance will lead to reliable . Exponential model for spatial: model and then predict the next u = 1,..., 10 time points.
forecasting of energy output. Colh) = (1 — v) exp(—cl ) + vI = - . Weighted nonlinear least squares implemented with the n1s
Utility-scaled solar plants are becoming more prominent. S ! h=0; function in = were used to fit the Cauchy and exponential
Modeling and forecasting methods of systems over various - Cauchy model for time: models to the time and spatial correlations, respectively. We
spatial ar_1d temporal rgsc_ﬂutions are needed. Ci(u) = (alul** + 1) used inverse distance weights.
The spatio-temporal kriging forecaster [1]: » The separable covariance model is then . » When determining the direction, we only examined directional
Z (S0, o) = (S0, 1) + € (S0, 1) 7 (Z — ) Coop (h. 1) = Cs(h) x Ci(U) 2 plots for the first 50% training data. For computational speed,
where Z = (Z (s1, ;) ..., Z (s, 1)) for n space-time coordinates, PAT | | é : e 8 we did not _regenera_te for eaqh predicted time point. Thus, we
u=E[Z],% = cor(Z), and ¢ (o, o) = cor (Z (So, 1) , Z). ~ The non-separable fully Symmef”C model is oo are assuming the wind direction stays constant throughout the
Aryaputera et al. [2] used non-separable, direction dependent Crs(h: u) = 1—v 9 ox c|lh Figure: temporal-correlation aay. - | |
covariance models to forecast solar irradiance data. FSUE (1 + au[2) P (1+ alu za)g . Erom th_e directional plotg, we determined that the previous 5
. They used separate models fitted individually to time and space. y ] . time points (2 and half minutes) of data should be used to
» The separate models were multiplied to make a separable | 1 _ VI”ZO predlct.the next time point(s). o
covariance model. . The values of v. ¢ a. and o are the same as for Cagp. - - In thﬁ flgutrhe blelow, twe ci[an see that ch dlreg.tlc;nal model
~ A non-separable model was used in which the separability Using these values,  is estimated which indicates the - results In the lowest root mean squared prediction error.
parameterization of [3] was fitted. level of separability (0 = separable, 1 = non-separable). | s
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» A directional model was used based on prior knowledge of wind
for the day and location of their data set.
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For this project, we introduce a visual method that uses the - -
correlation in the irradiance data to specify the directional =00 a0 200 L]
covariance model.
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|| e N gy, » Find the differences between along wind correlation, LR 1/ = ©
MR AR s a7 A Ime= s corr (Z(sj,t — u),Z (s; 1)) , and against wind correlation, = - == - | i
e (S Yol S el AP N U corr (Z(sj,t),Z (s, t — u)), for some time lag u for each > M- 8 _ Separable
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~ The difference correlation is modeled as | | 5 —  Directional
(u) (u) S
Caiff (h, U) = (/u>0/h1>0 [51 hy + 857 ho © | | | | |
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» The directional correlation function is then
S Figure: Root mean square prediction error for the three covariance models predicting 1,...,10
Cdir (h, U) a C/:S (h, U) + Osz,'ff (h, U) « M. time points ahead. The gray line represents the standard deviation of the testing data.
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Figure: Oahu, Hawii t 4- i - .
The data come from 17 sensors placed at the Oahu, HI, airport. I - . e

The data were obtained from the National Renewable Energy
Laboratory (NREL). Irradiance measurements were taken once a
second for the entire day of August 5, 2012. The data were then
averaged over every 30 seconds with the measurements taken at
night removed. A clear sky model was used to detrend the data

[4]- Figure: Example of directional distance

Figure: Directional correlation plots for the training data on Aug 5.



