# Solar Irradiance Covariance Modeling for Oahu, Hawaii

Chenyi Luo, Shengjie Shi and Faye Wang

Department of Statistics, University of California, Davis 2016 Research Training Group Project with Joshua Patrick

# UCDAVIS UNIVERSITY OF CALIFORNIA

# Introduction

Solar irradiance measurements are highly correlated with the amount of energy produced by a grid of photovoltaic panels. Thus, reliable forecasting of irradiance will lead to reliable forecasting of energy output.

Utility-scaled solar plants are becoming more prominent. Modeling and forecasting methods of systems over various spatial and temporal resolutions are needed.

The spatio-temporal kriging forecaster [1]:

$$Z\left(s_{0},\mathit{t}_{0}
ight)=\mu\left(s_{0},\mathit{t}_{0}
ight)+\mathbf{c}\left(s_{0},\mathit{t}_{0}
ight)'\Sigma^{-1}\left(\mathbf{Z}-oldsymbol{\mu}
ight)$$

where  $\mathbf{Z} = (Z(s_1, t_1), \dots, Z(s_n, t_n))'$  for n space-time coordinates,  $\mu = E[\mathbf{Z}], \Sigma = cor(\mathbf{Z}),$  and  $\mathbf{c}(s_0, t_0) = cor(Z(s_0, t_0), \mathbf{Z}).$  Aryaputera et al. [2] used non-separable, direction dependent covariance models to forecast solar irradiance data.

- ▶ They used separate models fitted individually to time and space.
- ► The separate models were multiplied to make a separable covariance model.
- A non-separable model was used in which the separability parameterization of [3] was fitted.
- A directional model was used based on prior knowledge of wind for the day and location of their data set.

#### Purpose

For this project, we introduce a visual method that uses the correlation in the irradiance data to specify the directional covariance model.

## **Location Map**

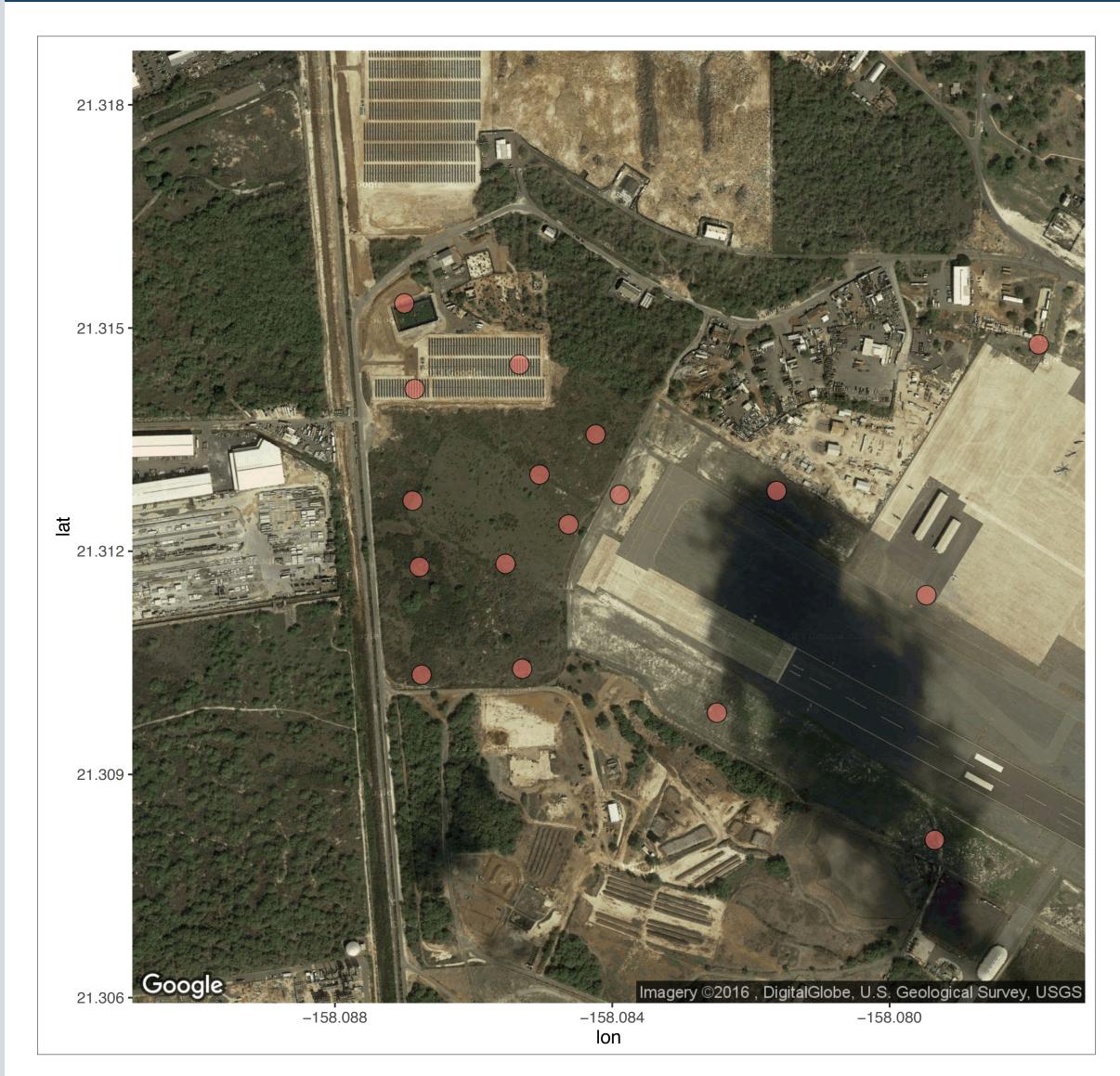


Figure: Oahu, Hawii

The data come from 17 sensors placed at the Oahu, HI, airport. The data were obtained from the National Renewable Energy Laboratory (NREL). Irradiance measurements were taken once a second for the entire day of August 5, 2012. The data were then averaged over every 30 seconds with the measurements taken at night removed. A clear sky model was used to detrend the data [4].

# **Separable and Fully Symmetric Models**

- We first fit a separable covariance model by first fitting models to the spatial and time correlations separately:
- Exponential model for spatial:

$$C_s(\boldsymbol{h}) = (1 - v) \exp(-c\|\boldsymbol{h}\|) + v\mathcal{I}_{\boldsymbol{h}=0},$$

Cauchy model for time:

$$\mathcal{C}_t(u) = (a|u|^{2\alpha} + 1)^{-\tau}$$

► The separable covariance model is then

$$\mathcal{C}_{sep}\left(oldsymbol{h},u
ight)=\mathcal{C}_{s}(oldsymbol{h}) imes\mathcal{C}_{t}(u)$$

▶ The non-separable fully symmetric model is

$$\mathbf{f}_{S}(\mathbf{h}; u) = \frac{1 - v}{(1 + a|u|^{2\alpha})} \times \begin{bmatrix} \exp\left(-\frac{c\|\mathbf{h}\|}{(1 + a|u|^{2\alpha})^{\frac{\beta}{2}}}\right) \\ + \frac{v}{1 - v}\mathcal{I}_{\mathbf{h}=0} \end{bmatrix}$$

The values of v, c, a, and  $\alpha$  are the same as for  $C_{sep}$ . Using these values,  $\beta$  is estimated which indicates the level of separability (0 = separable, 1 = non-separable).

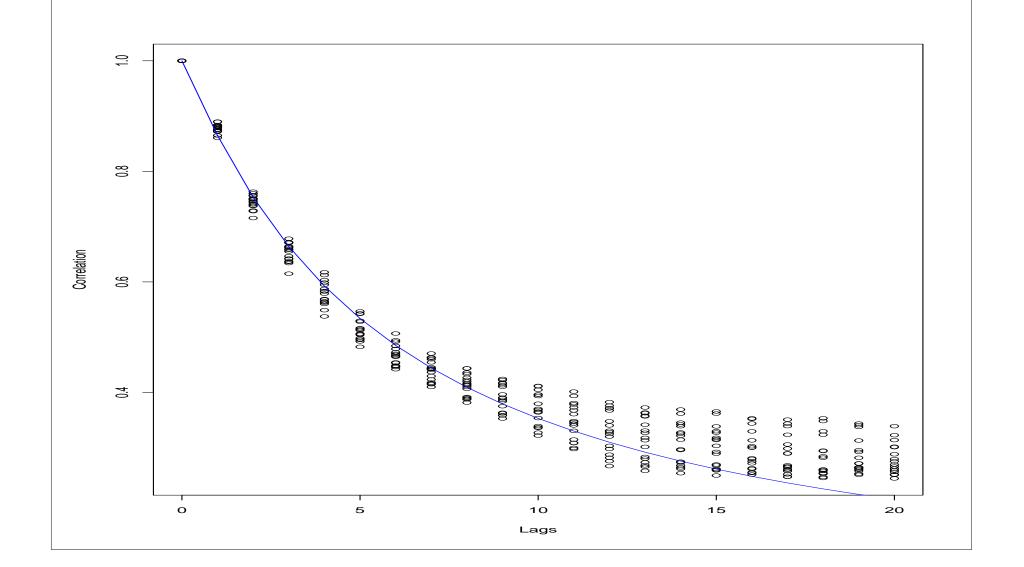


Figure: temporal-correlation

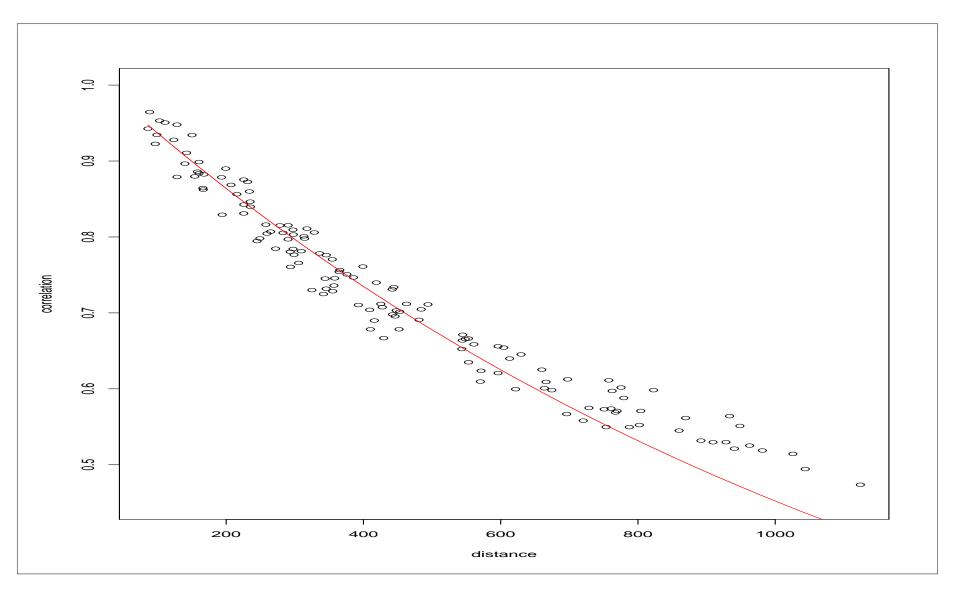


Figure: Spatial-correlation

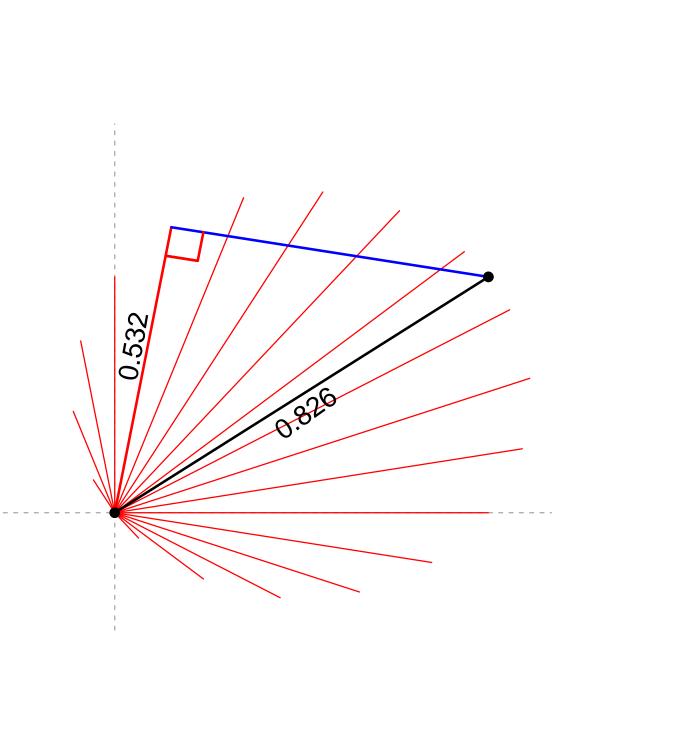
### **Directional Models**

- Calculate the directional distances for each pair of sensors: h₁ =along wind distance, h₂ =crosswind distance
- Find the differences between along wind correlation, corr  $(Z(s_i, t u), Z(s_j, t))$ , and against wind correlation, corr  $(Z(s_i, t), Z(s_j, t u))$ , for some time lag u for each pair of sensors  $i \neq j$
- ► The difference correlation is modeled as

$$C_{diff}(h, u) = \left(I_{u>0}I_{h_1>0}\left[\beta_1^{(u)}h_1 + \beta_2^{(u)}h_2 + \beta_3^{(u)}h_1h_2 + \beta_4^{(u)}h_1^2 + \beta_5^{(u)}h_1^2\right]\right)$$

► The directional correlation function is then

$$C_{dir}(h, u) = C_{FS}(h, u) + \alpha C_{diff}(h, u)$$



Time lag = 5

Time lag = 10

Time la

Figure: Directional correlation plots for the training data on Aug 5.

Figure: Example of directional distance

#### Result

- We used 50% training data. We utilized a moving window approach in which the previous 50% data was used to fit the model and then predict the next u = 1, ..., 10 time points.
- Weighted nonlinear least squares implemented with the nls function in R were used to fit the Cauchy and exponential models to the time and spatial correlations, respectively. We used inverse distance weights.
- ▶ When determining the direction, we only examined directional plots for the first 50% training data. For computational speed, we did not regenerate for each predicted time point. Thus, we are assuming the wind direction stays constant throughout the day
- From the directional plots, we determined that the previous 5 time points (2 and half minutes) of data should be used to predict the next time point(s).
- In the figure below, we can see that the directional model results in the lowest root mean squared prediction error.

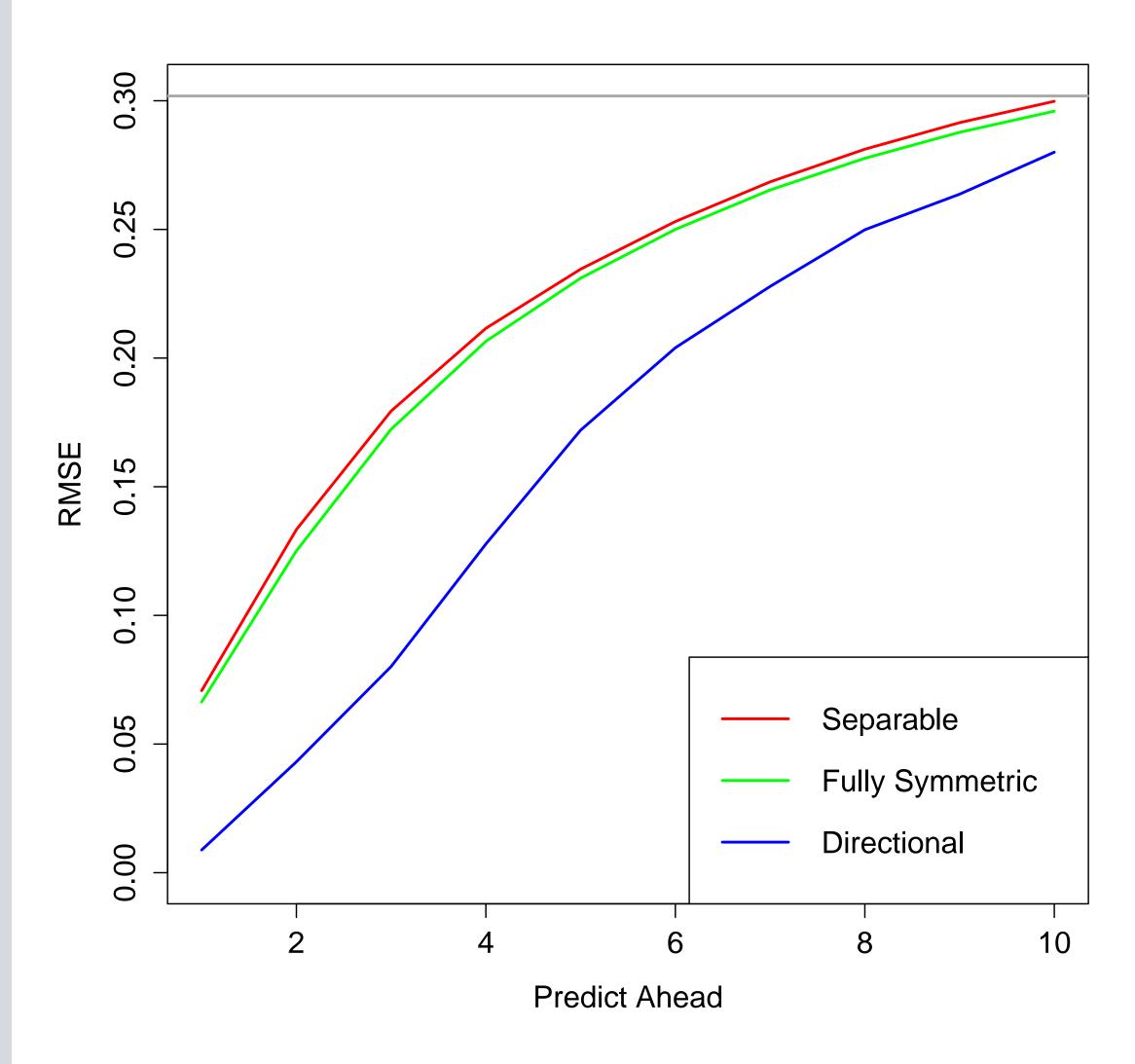


Figure: Root mean square prediction error for the three covariance models predicting 1,..., 10 time points ahead. The gray line represents the standard deviation of the testing data.

#### References

- [1] Noel Cressie and Hsin-Cheng Huang. Classes of nonseparable, spatio-temporal stationary covariance functions. *Journal of the American Statistical Association*, 94(448):1330–1339, 1999.
- [2] Aloysius W Aryaputera, Dazhi Yang, Lu Zhao, and Wilfred M Walsh. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. *Solar Energy*, 122:1266–1278, 2015.
- [3] Tilmann Gneiting, Marc G Genton, and Peter Guttorp. Geostatistical space-time models, stationarity, separability, and full symmetry. *Monographs On Statistics and Applied Probability*, 107:151, 2006.
- [4] Matthew J Reno, Clifford W Hansen, and Joshua S Stein. Global horizontal irradiance clear sky models: Implementation and analysis. *SANDIA report SAND2012-2389*, 2012.